INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2012-13

Statistics - IV, Midterm Examination, March 4, 2013 Marks are shown in square brackets. Total Marks: 50

1. Consider an $I \times J$ contingency table where the (i, j) cell has probability p_{ij} . Find the maximum likelihood estimate of p_{ij}

(a) when no restrictions are placed on the row and column factors;

(b) when it is known that the row and column factors are independent. [10]

2. (a) Suppose X_1 and X_2 are i.i.d. continuous random variables and U is a continuous positive random variable independent of X_1 . Let $X_3 = X_1 + U$. Show that X_3 is stochastically larger than X_2 .

(b) Suppose $X \sim \text{Gamma}(\lambda, \alpha)$ and $Y \sim \text{Gamma}(\lambda, \delta)$ with density, $f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \exp(-\lambda x) x^{\alpha-1}, \quad f_Y(x) = \frac{\lambda^{\delta}}{\Gamma(\delta)} \exp(-\lambda x) x^{\delta-1}, \text{ for } x > 0, \text{ where}$ $\lambda > 0, \alpha > 0, \delta > 0.$

Show that Y is stochastically larger than X if $\delta > \alpha$. [10]

3. Let $U_{(i)}^{(n)}$ denote the *i*th order statistics from a random sample of size *n* from U(0,1). Show that, for each $i, 1 \le i \le n$, $U_{(i)}^{(n)} - \frac{i}{n} \longrightarrow 0$ in probability as $n \longrightarrow \infty$. $\left[5\right]$

4. Consider a random sample X_1, X_2, \ldots, X_n from a continuous distribution with c.d.f. F and suppose we want to test H_0 : $F = F_0$ where F_0 is a fully specified c.d.f. Define the directional and non-directional Kolmogorov-Smirnov test statistics, D_n^+ , D_n^- and D_n for testing H_0 . Show that, under $H_0,$

(a) each of these statistics is distribution free;

(b) each of them converges to 0 in probability as $n \to \infty$. [15]

5. Two methods, A and B, were used in a determination of the latent heat of fusion of ice. The investigators wished to check whether the methods differed, and if so, whether method B typically gave a higher reading. The following table gives the change in total heat from ice at $-.72^{\circ}$ C to 0° C.

Method A	79.97	80.01	79.95	80.02	79.94
Method B	80.05	79.98	80.04	80.03	

[10]Use an appropriate nonparametric method for this investigation.